Chapter 6 Orthogonality and Least Squares
6.1 Inner Product, Length, and Orthogonality

The Inner Product
If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}. The number $\mathbf{u}^{T} \mathbf{v}$ is called the inner product of \mathbf{u} and \mathbf{v}, and often it is written as $\mathbf{u} \cdot \mathbf{v}$. That is, if

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

then the inner product of \mathbf{u} and \mathbf{v} is

$$
\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example 1. Let $\mathbf{u}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}3 \\ -1 \\ -5\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{r}6 \\ -2 \\ 3\end{array}\right]$. Compute the quantities:
$\mathbf{w} \cdot \mathbf{w}, \mathbf{x} \cdot \mathbf{w}, \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$ and $\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}$.
ANS: $\vec{W} \cdot \vec{W}=\vec{W} T \vec{W}=\left[\begin{array}{lll}3 & -1 & -5\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ -5\end{array}\right]=9+1+25=35$

$$
\begin{aligned}
& \vec{x} \cdot \vec{w}=\left[\begin{array}{lll}
6 & -2 & 3
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
-5
\end{array}\right]=18+2-15=5 \\
& \frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}=\frac{5}{35}=\frac{1}{7} \\
& \left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v}=\frac{-2+6}{4+9}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\frac{4}{13}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{aligned}
$$

Theorem 1 Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c be a scalar. Then
a. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
b. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
c. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$
d. $\mathbf{u} \cdot \mathbf{u} \geq 0, \quad$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

The Length of a Vector

If \mathbf{v} is in \mathbb{R}^{n}, with entries v_{1}, \ldots, v_{n}, then the square root of $\mathbf{v} \cdot \mathbf{v}$ is defined because $\mathbf{v} \cdot \mathbf{v}$ is nonnegative.
Definition. The length (or norm) of \mathbf{v} is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}, \quad \text { and } \quad\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}
$$

FIGURE 1
Interpretation of $\|\mathbf{v}\|$ as length.

Remarks:

1. For any scalar c, the length of $c \mathbf{v}$ is $|c|$ times the length of \mathbf{v}. That is,

$$
\|c \mathbf{v}\|=|c|\|\mathbf{v}\|
$$

2. A vector whose length is 1 is called a unit vector
3. Divide a nonzero vector \mathbf{v} by its length: $\mathbf{v} /\|\mathbf{v}\|$, we get a unit vector since the length of it is $(1 /\|\mathbf{v}\|)\|\mathbf{v}\|=1$. This process is sometimes called normalizing.

Example 2. Find a unit vector in the direction of the given vector.

$$
\vec{v}=\left[\begin{array}{r}
3 \\
6 \\
-3
\end{array}\right]
$$

By Remark 3. We know the unit vector in the direction of \vec{v} is $\frac{\vec{v}}{\|\vec{v}\|}=\frac{\left[\begin{array}{c}3 \\ 6 \\ -3\end{array}\right]}{\sqrt{3^{2}+6^{2}+(-3)^{2}}}=\frac{1}{3 \sqrt{6}}\left[\begin{array}{c}3 \\ 6 \\ -3\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$

Distance in \mathbb{R}^{n}

Definition. For \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v}, written as $\operatorname{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u}-\mathbf{v}$. That is,

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Example 3. Compute the distance between the vectors $\mathbf{u}=(7,1)$ and $\mathbf{v}=(3,2)$.

FIGURE 4 The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u}-\mathbf{v}$.

$$
\begin{aligned}
& =\sqrt{4^{2}+(-1)^{2}} \\
& =\sqrt{17}
\end{aligned}
$$

Example 4. If $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
\begin{aligned}
\operatorname{dist}(\mathbf{u}, \mathbf{v}) & =\|\mathbf{u}-\mathbf{v}\|=\sqrt{(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v})} \\
& =\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}}
\end{aligned}
$$

Orthogonal Vectors
Definition. Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal (to each other) if $\mathbf{u} \cdot \mathbf{v}=0$.

Example 5. Determine which of the following pairs of vectors are orthogonal.
(1) $\mathbf{u}=\left[\begin{array}{r}12 \\ 3 \\ -5\end{array}\right], \mathbf{v}=\left[\begin{array}{r}2 \\ -3 \\ 3\end{array}\right]$
(2) $\mathbf{u}=\left[\begin{array}{r}3 \\ 2 \\ -5 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{r}-4 \\ 1 \\ -2 \\ 6\end{array}\right]$
(1) Compute $\vec{u} \cdot \vec{v}=12 \times 2-3 \times 3-15=0$

Thus \vec{n}, \vec{v} are orthogonal to each other.
(2) Compute $\vec{u} \cdot \vec{v}=-12+2+10+0-6=0$

Thus \vec{u}, \vec{v} are orthogonal to each other.

The Pythagorean Theorem
Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.

FIGURE 6
proof: \vec{u}, \vec{v} are orthogonal

$$
\begin{aligned}
& \Leftrightarrow \vec{u} \cdot \vec{v}=0 \\
& \Leftrightarrow\|\vec{u}+\vec{v}\|^{2} \\
&=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v}) \\
&= \vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}+\vec{w} \vec{v}+\vec{v} \cdot x^{0} \\
&=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}
\end{aligned}
$$

Orthogonal Complements

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then \mathbf{z} is said to be orthogonal to W. The set of all vectors \mathbf{z} that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (and read as " W perpendicular" or simply " W perp").

Example: Let W be a plane through $\overrightarrow{0}$ in \mathbb{R}^{3} L : the line through the origin and perpendicular to w

Let \vec{z} be a vector on $1, \vec{w}$ be a vector
W.

Then $L=W^{\perp}, W=L^{\perp}$

Theorem Let W a subspace of \mathbb{R}^{n}

1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
2. W^{\perp} is a subspace of \mathbb{R}^{n}.

Theorem 3 Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^{T} :

$$
(\text { Row } A)^{\perp}=\operatorname{Nul} A \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
$$

FIGURE 8 The fundamental subspaces determined by an $m \times n$ matrix A.

Exercise 6. Let $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Describe the set H of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ that are orthogonal to \mathbf{v}. [Hint: Consider $\mathbf{v}=\mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.]
Solution. When $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$, the set H of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ that are orthogonal to v is the subspace of vectors whose entries satisfy $a x+b y=0$. If $a \neq 0$, then $x=-(b / a) y$ with y a free variable, and H is a line through the origin. A natural choice for a basis for H in this case is $\left\{\left[\begin{array}{r}-b \\ a\end{array}\right]\right\}$. If $a=0$ and $b \neq 0$, then $b y=0$. Since $b \neq 0, y=0$ and x is a free variable. The subspace H is again a line through the origin. A natural choice for a basis for H in this case is $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$, but $\left\{\left[\begin{array}{r}-b \\ a\end{array}\right]\right\}$ is still a basis for H since $a=0$ and $b \neq 0$. If $a=0$ and $b=0$, then $H=\mathbb{R}^{2}$ since the equation $0 x+0 y=0$ places no restrictions on x or y.

