Chapter 6 Orthogonality and Least Squares

6.1 Inner Product, Length, and Orthogonality

The Inner Product

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n . The number $\mathbf{u}^T \mathbf{v}$ is called the inner product of \mathbf{u} and \mathbf{v} , and often it is written as $\mathbf{u} \cdot \mathbf{v}$. That is, if

$$\mathbf{u} = egin{bmatrix} u_1\ u_2\ dots\ u_n \end{bmatrix} \quad ext{and} \quad \mathbf{v} = egin{bmatrix} v_1\ v_2\ dots\ v_n \end{bmatrix}$$

then the inner product of ${f u}$ and ${f v}$ is

Example 1. Let $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$. Compute the quantities:

$$\mathbf{w} \cdot \mathbf{w}, \mathbf{x} \cdot \mathbf{w}, \frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \text{ and } \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}.$$

$$ANS : \overrightarrow{W} \cdot \overrightarrow{W} = \overrightarrow{W}^{T} \overrightarrow{W} = \begin{bmatrix} 3 & -1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix} = 9 + 1 + 25 = 35$$

$$\vec{x} \cdot \vec{w} = \begin{bmatrix} 6 - 2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix} = \frac{18}{12} - 15 = 5$$
$$\frac{\vec{x} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} = \frac{5}{35} = \frac{1}{7}$$
$$\left(\frac{\vec{k} \cdot \vec{v}}{\vec{v} \cdot \vec{w}}\right) \vec{v} = \frac{-2+6}{4+9} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \frac{4}{13} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Theorem 1 Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then a. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ b. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$ c. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$ d. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$

The Length of a Vector

If **v** is in \mathbb{R}^n , with entries v_1, \ldots, v_n , then the square root of **v** · **v** is defined because **v** · **v** is nonnegative.

Definition. The **length** (or **norm**) of \mathbf{v} is the nonnegative scalar $||\mathbf{v}||$ defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v}\cdot\mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \quad ext{and} \quad \|\mathbf{v}\|^2 = \mathbf{v}\cdot\mathbf{v}$$

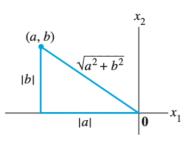


FIGURE 1

Interpretation of $\|\mathbf{v}\|$ as length.

Remarks:

1. For any scalar c, the length of $c\mathbf{v}$ is |c| times the length of \mathbf{v} . That is,

$$\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$$

- 2. A vector whose length is 1 is called a **unit vector**.
- 3. Divide a nonzero vector \mathbf{v} by its length: $\mathbf{v}/\|\mathbf{v}\|$, we get a unit vector since the length of it is $(1/\|\mathbf{v}\|)\|\mathbf{v}\| = 1$. This process is sometimes called normalizing.

Example 2. Find a unit vector in the direction of the given vector.

$$\vec{v} = \begin{bmatrix} 3\\ 6\\ -3 \end{bmatrix}$$

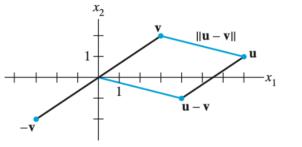
By Remark 3. We know the unit vector in the direction
of \vec{v} is $\frac{\vec{v}}{||\vec{v}||} = \frac{\begin{pmatrix} 3\\ -3\\ -3 \end{pmatrix}}{\sqrt{3^2+6^2+(-3)^2}} = \frac{1}{3\sqrt{6}} \begin{bmatrix} 3\\ -3\\ -3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$

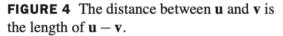
<u>Distance in \mathbb{R}^n </u>

Definition. For **u** and **v** in \mathbb{R}^n , the distance between **u** and **v**, written as $dist(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u} - \mathbf{v}$. That is,

$$\operatorname{dist}(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\|$$

Example 3. Compute the distance between the vectors $\mathbf{u} = (7,1)$ and $\mathbf{v} = (3,2)$.





dist
$$(\vec{u}, \vec{v})$$

= $||\vec{u} - \vec{v}||$
= $||(4, -1)||$
= $\sqrt{4^{2} + (-1)^{2}}$
= $\sqrt{17}$

Example 4. If $\mathbf{u}=(u_1,u_2,u_3)$ and $\mathbf{v}=(v_1,v_2,v_3)$, then

$$egin{aligned} ext{dist}(\mathbf{u},\mathbf{v}) &= \|\mathbf{u}-\mathbf{v}\| = \sqrt{(\mathbf{u}-\mathbf{v})\cdot(\mathbf{u}-\mathbf{v})} \ &= \sqrt{(u_1-v_1)^2+(u_2-v_2)^2+(u_3-v_3)^2} \end{aligned}$$

Orthogonal Vectors

Definition. Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example 5. Determine which of the following pairs of vectors are orthogonal.

(1)
$$\mathbf{u} = \begin{bmatrix} 12\\ 3\\ -5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2\\ -3\\ 3 \end{bmatrix}$$

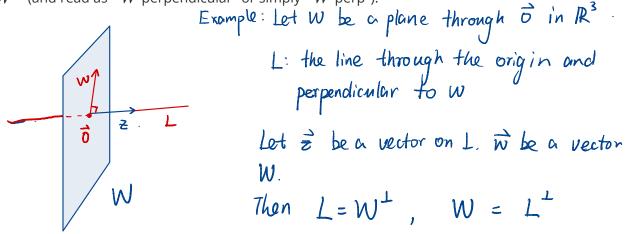
(2) $\mathbf{u} = \begin{bmatrix} 3\\ 2\\ -5\\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -4\\ 1\\ -2\\ 6 \end{bmatrix}$
(1) Compute $\vec{u} \cdot \vec{v} = 12 \times 2 - 3 \times 3 - 15 = 0$
Thus \vec{u}, \vec{v} are orthogonal to each other.
(2) Compute $\vec{u} \cdot \vec{v} = -12 + 2 + 10 + 0 - 6 = 0$
Thus \vec{u}, \vec{v} are orthogonal to each other.

The Pythagorean Theorem

Two vectors **u** and **v** are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Orthogonal Complements

If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{z} is said to be **orthogonal to** W. The set of all vectors \mathbf{z} that are orthogonal to W is called the **orthogonal complement** of W and is denoted by W^{\perp} (and read as " W perpendicular" or simply " W perp").



Theorem Let W a subspace of \mathbb{R}^n

- 1. A vector **x** is in W^{\perp} if and only if **x** is orthogonal to every vector in a set that spans W.
- 2. W^{\perp} is a subspace of \mathbb{R}^n .

Theorem 3 Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \quad ext{ and } \quad (\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$$

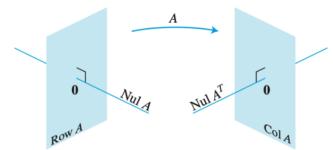


FIGURE 8 The fundamental subspaces determined by an $m \times n$ matrix A.

Exercise 6. Let $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$. Describe the set H of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ that are orthogonal to \mathbf{v} . [Hint: Consider $\mathbf{v} = \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$.]

Solution. When $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$, the set H of all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ that are orthogonal to v is the subspace of vectors whose entries satisfy ax + by = 0. If $a \neq 0$, then x = -(b/a)y with y a free variable, and H is a line through the origin. A natural choice for a basis for H in this case is $\left\{ \begin{bmatrix} -b \\ a \end{bmatrix} \right\}$. If a = 0 and $b \neq 0$, then by = 0. Since $b \neq 0, y = 0$ and x is a free variable. The subspace H is again a line through the origin. A natural choice for a basis for H in this case is $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$, but $\left\{ \begin{bmatrix} -b \\ a \end{bmatrix} \right\}$ is still a basis for H since a = 0 and $b \neq 0$. If a = 0 and $b \neq 0$. If a = 0 and $b \neq 0$, then $H = \mathbb{R}^2$ since the equation 0x + 0y = 0 places no restrictions on x or y.